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Mechanism of chaos synchronization and on-off intermittency
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Department of Physics, Pai Chai University, Seogu, Taejon, 302-735, Korea

~Received 3 February 1997!

We report a mechanism of synchronization that occurs when the system consisting of the variable differ-
ences of two identical chaotic systems generates an infinite laminar phase period that is connected with on-off
intermittency. For the synchronization a signal of the master system is fed back to a corresponding slave
system variable. The phenomenon is analyzed theoretically in logistic maps and demonstrated experimentally
in electronic circuits based on the forced double-well Duffing equation.@S1063-651X~97!11808-6#

PACS number~s!: 05.45.1b, 07.50.Ek
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In chaotic systems, when initial points of two identic
systems are slightly different, they have different trajector
as time evolves, even though each map has the same attr
in phase space. This phenomenon is due to the sensitivi
the initial conditions@1#. Recently, Pecora and Carroll hav
suggested a method of synchronization by linking two id
tical systems with a common signal~or signals! so that the
distance between the two corresponding trajectories c
verges to zero although they have different initial points@2#.
After that, some modified or new methods have been de
oped and experimentally verified@3#, since synchronization
in chaotic systems has high potentiality of practical appli
tions in secure communication@4#, optics@5#, and nonlinear
dynamics model identification@6#.

In estimating synchronization, sub-Lyapunov expone
are generally an important factor, for when synchronizat
occurs they are always negative@2#. This is a necessary, bu
not a sufficient, condition. When the parameters of the t
chaotic systems are mismatched, synchronization is degr
even though the sub-Lyapunov exponents remain nega
And when the sub-Lyapunov exponents are positive, des
chronization events occur intermittently. It has been fou
by several authors that this phenomenon is related to on
intermittency, but not fully analyzed@7#.

So in this paper we analyze the mechanism of synchr
zation by using the system consisting of the variable diff
ences of two identical chaotic systems, which we refer to
error dynamics~ED!. The ED exhibits that desynchroniza
tion events are related to on-off intermittency. The synch
nization occurs when the ED generates an infinite period
laminar phase~IPLP!, which is connected with on-off inter
mittency @8#. In this synchronization the structure of the b
furcation diagram of the ED has an important role since
synchronization occurs when the parameters of the ED
forced through a bifurcation point chaotically by the mas
system signals. For this, we introduce a method of feed
back a signal~or signals! of the master system to the corr
sponding variable~variables! of the slave system. We ana
lyze the phenomenon theoretically in the logistic maps
detail, and demonstrate it experimentally in electronic c
cuits based on the forced double-well Duffing equation.
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To show the point of our investigation, we briefly con
sider two identical chaotic systems:

ẋ5F~x,y!, ẏ5G~x,y! ~master system!,

~1!

ẋ85F~x8,y8!, ẏ85G~x8,y8! ~slave system!.

In these systems, a signal of the master systemy(t) is added
to y8 with a scaling factora, so the slave system is

ẋ85F„x8,y81a@y~ t !2y8#…,

~2!

ẏ85G„x8,y81a@y~ t !2y8#….

If we let x2x85X andy2y85Y, the ED becomes

Ẋ5F8„a,x~ t !,y~ t !;X,Y…,

~3!

Ẏ5G8„a,x~ t !,y~ t !;X,Y….

Thena, x(t) andy(t) become parameters of the ED. Here
the parameters of the ED are forced through a bifurcat
point byx(t) andy(t), which are chaotic, the system gene
ates on-off intermittency or IPLP according toa @8#. In the
region of a where the system generates IPLP,X→0 and
Y→0 as time evolves. Under this condition, the slave syst
is synchronized with the master system. We here note th
a50 two identical systems are independent of each oth
and that ifa51, the Pecora-Carroll synchronization occu
@3#.

Now to analyze our synchronization theoretically we co
sider, for example, two identical logistic maps with a fee
back signalxn : the master and the slave,

xn115lxn~12xn!,

~4!

xn118 5l@xn81a~xn2xn8!#$12@xn81a~xn2xn8!#%,

respectively. If we letxn2xn85yn , the ED becomes

yn115l~12a!yn@~122xn!1~12a!yn#. ~5!
3697 © 1997 The American Physical Society
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From the ED it is obvious that the parameter of the system
forced chaotically byxn as in the system generating on-o
intermittency@8#. If the ED generates IPLP, the two logist
maps become synchronized.

To obtain the condition ofa for synchronization, the bi-
furcation diagram of the ED according tox is obtained as
given in Fig. 1 whenl53.8 anda50.4. The figure shows a
stable period 1-T orbit between12 61/2l(12a) wherey50
and between 1

2 21/2l(12a) and 1
2 23/l(12a) where

y5@12l(12a)(122x)#/l(12a)2. The pointsx1, x2 are
determined by equationsF8(y)561 andy5F(y) and the
point x3 by equationy5F+F(y) so that the values of the
points are x151/211/4.56, x251/221/4.56, and
x351/223/4.56, respectively. The unstable period 1-T orb
the dotted line, is also determined by equationy5F(x;y).
As the parameter increases the stable period 1-T orbit,y50,
bifurcates into a period 2-T orbit atx1 and develops into
chaos through the period doubling bifurcation. And as
parameter decreases it bifurcates into another period 1-T
bit at x2 and this orbit bifurcates again into a period 2-T or
at x3 and develops into chaos through period doubling bif
cation. At each end of the diagram,x1c51/2
24/@2l(12a)# and x2c51/211/@l(12a)#, the chaotic
bands abruptly terminate because of boundary crisis. E
crisis point is obtained by equationsF+F(x;yM)50 andF
+F(x;yM)5@12l(12a)(122x)#/l(12a)2, respectively,
whereyM are the values satisfyingdF(x;yM)/dy50. Thus
the critical points obtained are20.377 19, . . . and
0.938 596, . . . .

If we let l(12a)(122xn)5zn the system has the form
of yn115znyn1O(yn

2) similar to the equation in Ref.@7#,
wherezn521, 1, 0 atxn5x2, x1, 1/2, respectively. Then
the bifurcation points are atz561, andzn is in a chaotic
process. So the ED generates chaos, on-off intermittenc
IPLP according toa. From the equation we can obtain th
regions for IPLP since they are adjoined to the onset of
off intermittency. The condition for the onset of on-off inte
mittency is^ lnz&50 whenzn is uniform, since the system ha
approximately the form ofyn11'en^ lnz&y15(a/e)ny1, where
znP(0,a) @8#.

FIG. 1. Bifurcation diagram of the ED of the logistic map
depending onx. It shows a stable orbit, which hasy50 in the
region froma50.2807, . . . toa50.7192, . . . andperiod doubling
bifucations as the parameter decreases or increases.
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In our study, the condition for the onset of on-off inte
mittency is obtained by dividing the integration region ofzn

into zU.zn.0 andzL,zn,0 with density functionP(z) as
follows:

E
0

2zL
P~z!lnzdz1E

0

zU
P~z!lnzdz50, ~6!

wherezL andzU are the lower and upper limits ofz. If we
assumeP(z) is uniform, P(z)51/(zU2zL), and Eq. ~6!
yields ln@l(12a)#512@(2xU21)ln(2xU21)1(122xL)ln(1
22xL)]/2(xU2xL) since zU5122xL , zL5122xU ,
xU5l/4, andxL5(l2/4)(12l/4). The critical value ofa
for the onset of on-off intermittency is 0.28466, . . . for
l53.8. The critical value obtained numerically
ac50.37524, . . . . Here whena.ac the system generate
IPLP. The difference between the analytical and numer
results is caused by the following: the density function is n
uniform; whenyn is above the unstable orbits~the dotted
lines in Fig. 1! the trajectory diverges althoughx2,xn,x1;
and the upper limit ofxn exceedsx2c . We note that
xU50.95.x2c and thatxL50.1805.x1c . These effects are
not considered in the analytic calculation, but the analy
result approaches the numerical one. So, to sum up, w
whena,ac anda is close toac , on-off intermittency oc-
curs, and whena is far below the critical point, only a cha
otic burst appears, whena.ac the ED generates IPLP
which means the two logistic maps are synchronized.

FIG. 2. Temporal behaviors of synchronization in the logis
maps when the maps are~a! synchronized (a50.4), ~b! intermit-
tently synchronized (a50.33), and~c! desynchronized (a50.25).
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Now to observe the synchronizing phenomenon accordin
to a, the temporal behaviors ofyn andxn2xn8 are obtained
when the two logistic maps are~a! synchronized,~b! inter-
mittently synchronized, and~c! desynchronized fora50.4,
0.33, and 0.25, respectively, as given in Fig. 2. Figure 2~a!
presents the signals ofxn , xn8 , yn , andxn2xn8 . Thereyn and
xn2xn8 converge to 0, that is, the ED generates IPLP. The
the two logistic maps are synchronized. Figure 2~b! presents
the signals ofyn and xn2xn8 , which show on-off intermit-
tency. This means the two logistic maps are intermittent
synchronized. Figure 2~c! also presents the signals ofyn and
xn2xn8 , which are chaotic. Then the two logistic maps ar
not synchronized. In the figures the temporal behavior o
yn is approximately the same as that ofxn2xn8 . This indi-
cates that the ED well describes the signal differences of t
master and the slave systems. It also verifies that synchro
zation occurs when the ED generates IPLP.

Now to demonstrate our synchronization in electronic cir
cuits based on the forced double-well Duffing equation, w
first consider the following master and replica slave syste
equations with a feedback signalx(t):

FIG. 3. Schematic diagram of the circuit based on the force
double-well Duffing equation to implement synchronization.

TABLE I. The region of synchronization in chaotic systems.

System Variable Synchronizing
region

Lorenz
s510 x 0.83•••,a<1.0
r 58/3 y 0.85•••,a<1.0
b523 z a,25.0, . . .

Duffing
k50.2, x 0.18•••,a,0.26, . . . ,

0.91•••,a<1.0
20.3cos(1.4t) y 22.0•••,a,21.3, . . . ,

0.19•••,a,0.25, . . . ,
0.95•••,a<1.0

Brusselator
A50.2, B50.24 x 0.19•••,a<1.0
0.3cos(20t) y a51.0, a,20.20, . . .
g
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ẋ5y,

ẏ52ky1x2x31B cos~vt ! ~master system!,

ẋ85y8,
~7!

ẏ852ky81$x81a@x~ t !2x8#%2$x81a@x~ t !2x8#%3

1B cos~vt ! ~slave system!.

If we let x2x85X andy2y85Y, the equations are reduce
to

Ẋ5Y,

Ẏ52kY2~3x~ t !221!~12a!X13x~ t !~12a!2X2

2~12a!3X3. ~8!

Here it becomes obvious that the parameters are also m
lated byx(t). Since the parameters are forced through a
furcation point, we obtain the regions ofa for synchroniza-
tion numerically, which are given in Table I at give
parametric values.

The schematic diagram of the analog circuit of the Du
ing equation for synchronization is given in Fig. 3, whic
implements Eqs.~7!. In the figure, the signal from the exte
nal oscillator~Tektronix FG501A! is applied to the two cha-
otic systems in parallel through buffers~1 and 2! to synchro-
nize the oscillator where the amplitude is about 3.4 V and
frequency is about 9.6 kHz. The operational amplifie
~OA’s! and associated circuitry perform the operations
addition, subtraction, inversion, and integration. Analog m
tipliers ~3 and 4! implement the nonlinear terms in the circu
equation. We guarantee that our circuit implementation

d

FIG. 4. Experimental outputs of the circuit.~a! Chaotic attractor
of the forced double-well Duffing equation projected onto thexy
plane, and the trajectories of the master systemy vs slave system
y8 when the two systems are~b! synchronized (a50.56),~c! inter-
mittently synchronized (a50.59), and ~d! desynchronized
(a50.65).
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Eq. ~7! is exact, and that the coefficientk can be indepen-
dently varied by adjusting the variable resistorsR1 and R2.
The circuit time scale can be easily adjusted by changing
values of the capacitors for integration. For synchronizati
the signalx from the master system is substracted byx8. The
subtracted signal is reduced by a variable resistorR3 ~100
kV) to vary the scaling factora and the reduced one i
added tox8. The OA’s and buffers used in this circuit ar
LF353, and multipliers~3 and 4! are MPY100. In this circuit,
all the resistors connected to the OA’s and buffers are 10
V and the capacitors are 1 nF.

To illustrate the chaotic behavior of the master system,
obtain the phase diagram ofx versusy as given in Fig. 4~a!.
The figure well shows the typical phase diagram of the D
fing oscillator. To observe synchronization, we tune the v
able resistorR3, and obtain the phase diagrams ofy versus
y8 when the two chaotic systems are synchronized, interm
tently synchronized, and desynchronized. Whena50.56, the
two systems are synchronized as the phase diagram sho
Fig. 4~b!. Whena50.59, the systems are synchronized
termittently as in Fig. 4~c!. And whena50.65, the systems
are not synchronized as in Fig. 4~d!. In this circuit, the region
of our synchronization is about 0.57.a.0.49. In addition
we obtain our synchronization when 0.95,a,1.0, and the
Pecora-Carroll synchronization whena51.0. The synchro-
nization regions are similar to those obtained numerically
,
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in Table I. ~In experiment, we have obtained other vario
regions of synchronization as we vary the frequency or a
plitude of the external force.!

Our technique of synchronization is applied in other no
linear dynamical systems numerically such as the for
double-well Duffing, the Lorenz, the forced Brusselator s
tems. Then we observe our synchronization in various
gions ofa even ifaÞ1.0 as given in Table I. In the region
where our synchronization occurs the ED’s generate IP
connected with on-off intermittency as analyzed in t
above.

In conclusion we have observed a mechanism of synch
nization, which occurs when the ED generates IPLP.
have developed for this synchronization a method of feed
back a signal of the master system to the corresponding v
able of the slave system. The mechanism of synchroniza
is verified in the logistic maps, and demonstrated in el
tronic circuits based on the forced double-well Duffing equ
tion. We expect this type of synchronization will be helpf
in developing other methods of synchronization where, es
cially, on-off intermittency appears. It is also expected to
applicable to practical systems such as private commun
tions.

This work was supported by the Korean Ministry of Sc
ence and Technology.
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