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Mechanism of chaos synchronization and on-off intermittency
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We report a mechanism of synchronization that occurs when the system consisting of the variable differ-
ences of two identical chaotic systems generates an infinite laminar phase period that is connected with on-off
intermittency. For the synchronization a signal of the master system is fed back to a corresponding slave
system variable. The phenomenon is analyzed theoretically in logistic maps and demonstrated experimentally
in electronic circuits based on the forced double-well Duffing equafi®h063-651X97)11808-9

PACS numbse(s): 05.45+b, 07.50.Ek

In chaotic systems, when initial points of two identical To show the point of our investigation, we briefly con-
systems are slightly different, they have different trajectoriessider two identical chaotic systems:
as time evolves, even though each map has the same attractor

in phase space. This phenomenon is due to the sensitivity of x=F(x,y), y=G(x)y) (mastersystem

the initial conditiong1]. Recently, Pecora and Carroll have 1)
suggested a method of synchronization by linking two iden- . .

tical systems with a common sign@ir signal$ so that the X'=F(x",y"), y'=G(x'y') (slave system

distance between the two corresponding trajectories con- ) .
verges to zero although they have different initial pojgs " these systems, a signal of the master systéipis added

After that, some modified or new methods have been devef® Y With & scaling factor, so the slave system is
oped and experimentally verifig®], since synchronization

in chaotic systems has high potentiality of practical applica- X' =FX"y' +aly()=y'D,
tions in secure communicatidd], optics[5], and nonlinear 2
dynamics model identificatiof5]. - ., ,

In estimating synchronization, sub-Lyapunov exponents y'=GK.y' +aly()—y'].

are generally an important factor, for when synchronizatior\]c we let x—x’ =
occurs they are always negatij@. This is a necessary, but

not a sufficient, condition. When the parameters of the two

chaotic systems are mismatched, synchronization is degraded

even though the sub-Lyapunov exponents remain negative. )
And when the sub-Lyapunov exponents are positive, desyn- S~y .

chronization events occur intermittently. It has been found Y=G (@ x(),y(1;XY).

by sev_eral authors that this phenomenon is related to on-offhena' x(t) andy(t) become parameters of the ED. Here if
intermittency, but not fully analyzegr]. _ the parameters of the ED are forced through a bifurcation
So in this paper we analyze the mechanism of synchronipgint by x(t) andy(t), which are chaotic, the system gener-
zation by using the system consisting of the variable differ-ates on-off intermittency or IPLP according #0[8]. In the
ences of two identical chaotic systems, which we refer to agegion of & where the system generates IPLP—0 and
error dynamics(ED). The ED exhibits that desynchroniza- y— 0 as time evolves. Under this condition, the slave system
tion events are related to on-off intermittency. The synchrois synchronized with the master system. We here note that if
nization occurs when the ED generates an infinite period of,=0 two identical systems are independent of each other,
laminar phasgIPLP), which is connected with on-off inter-  and that ifa=1, the Pecora-Carroll synchronization occurs
mittency[8]. In this synchronization the structure of the bi- [3].
furcation diagram of the ED has an important role since the 'Now to analyze our synchronization theoretically we con-

synchronization occurs when the parameters of the ED argider, for example, two identical logistic maps with a feed-
forced through a bifurcation point chaotically by the masterpack signalx,: the master and the slave,

system signals. For this, we introduce a method of feeding

X andy—y’'=Y, the ED becomes

X=F"(a,x(1),y(1);X,Y),

back a signalor signalg of the master system to the corre- Xnr1=AXp(1—X,),

sponding variabldvariableg of the slave system. We ana- @)
lyze the phenomenon theoretically in the logistic maps in

detail, and demonstrate it experimentally in electronic cir- Xp 1= NXLF+ a(Xn—= X)) L= X+ a(Xg—X)) 1},

cuits based on the forced double-well Duffing equation.
respectively. If we lek,—x,=y,, the ED becomes

*Electronic address: chmkim@woonam.paichai.ac.kr Yni1=A1—a)y[(1—2%,)+(1—a)y,]. (5)
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FIG. 1. Bifurcation diagram of the ED of the logistic maps
depending orx. It shows a stable orbit, which has=0 in the RO g A
region froma=0.2807 ... toa=0.7192 . .. andperiod doubling Ya ‘ ‘ e o
bifucations as the parameter decreases or increases. (©)
From the ED it is obvious that the parameter of the system is XpXn | B i
forced chaotically by, as in the system generating on-off

intermittency[8]. If the ED generates IPLP, the two logistic 0.0 10000 Time 2000.0
maps become synchronized.

To obtain the condition ofr for synchronization, the bi-
furcation diagram of the ED according tois obtained as FIG. 2. Temporal behaviors of synchronization in the logistic
given in Fig. 1 wher\ =3.8 anda=0.4. The figure shows a Maps when the maps afe) synchronized ¢=0.4), (b) intermit-
stable period 1-T orbit betwee}lt 1/2\(1— a) wherey=0 tently synchronized¢=0.33), and(c) desynchronizedd = 0.25).
and betweeni—1/2\(1—«a) and 3—3M\(1—a) where
y=[1—\(1—a@)(1—2x)]/A(1— @)? The pointsxy, X, are In our study, the condition for the onset of on-off inter-
determined by equations’(y)=*1 andy=F(y) and the  mittency is obtained by dividing the integration regionzgf

point x3 by equationy=F°F(y) so that the values of the into z,>z,>0 andz <z,<0 with density functiorP(z) as
points are x;=1/2+1/456, x,=1/2—-1/456, and follows:

X3z=1/2—3/4.56, respectively. The unstable period 1-T orbit,
the dotted line, is also determined by equatioaF(x;y).
As the parameter increases the stable period 1-T orki), , ,
bifurcates into a period 2-T orbit at; and develops into o v _
chaos through the period doubling bifurcation. And as the fo P(2)inzdzt fo P(2)nzdz=0, ©
parameter decreases it bifurcates into another period 1-T or-
bit atx, and this orbit bifurcates again into a period 2-T orbit
atxz and develops into chaos through period doubling bifurwherez, andz; are the lower and upper limits at If we
cation. At each end of the diagramx;c=1/2  assumeP(z) is uniform, P(z)=1/(zy,—z.), and Eq.(6)
—4[2N(1—-a)] and Xpc=1/2+ 1[\(1-a)], the chaotic vyields IMA(1—a)]=1-[(2x;—1)In(2x,—1)+(1—2x)In(1
bands abruptly terminate because of boundary crisis. Each 2x,)]/2(x,—x,) since zy=1-2x,, 2z =1-2xy,
crisis point is obtained by equatio®®F(x;yu) =0 andF  x,=\/4, andx, = (\?/4)(1—\/4). Thecritical value of «
oF(X;ym)=[1-N(1—a)(1-2x)1/\(1—@)? respectively, for the onset of on-off intermittency is 0.28466 . for
whereyy, are the values satisfyindF(x;yy)/dy=0. Thus  \=3.8. The critical value obtained numerically is
the critical points obtained are—0.37719... and 4_.=0.37524....Here whena>a, the system generates
0.93859. . .. IPLP. The difference between the analytical and numerical
If we let \(1—a)(1—-2x,) =2, the system has the form results is caused by the following: the density function is not
of Yni1=2,yn+O(y2) similar to the equation in Ref7],  uniform; wheny, is above the unstable orbitthe dotted
wherez,=—1, 1, 0 atx,=X,, X;, 1/2, respectively. Then lines in Fig. ) the trajectory diverges although <x,<Xi;
the bifurcation points are a=*1, andz, is in a chaotic and the upper limit ofx, exceedsx,.. We note that
process. So the ED generates chaos, on-off intermittency, o, =0.95>x,. and thatx, =0.1805>x,.. These effects are
IPLP according tox. From the equation we can obtain the not considered in the analytic calculation, but the analytic
regions for IPLP since they are adjoined to the onset of onresult approaches the numerical one. So, to sum up, while
off intermittency. The condition for the onset of on-off inter- whena<a, and « is close toa,, on-off intermittency oc-
mittency is(Inz)=0 whenz, is uniform, since the system has curs, and whem is far below the critical point, only a cha-
approximately the form ofy, . ;~e""y,=(a/e)"y;, where otic burst appears, whea>a, the ED generates IPLP,
z,e(0,a) [8]. which means the two logistic maps are synchronized.
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TABLE I. The region of synchronization in chaotic systems.

X=Y,
System Variable Synchronizin .
y yner g y=—ky+x—x3+B coqwt) (master system
region
Lorenz x' =y,
o=10 X 0.83--<a<10 @)
r=8/3 y 0.85--<a<1.0 y' ==Ky +{X'+a[x(t) = x' T} = {X' + a[x(t) —x']}*
b=23 z a<-50,...
Duffing +B cogwt) (slave system
k=0.2, X 0.18 --<a<0.26..., If we letx—x’=X andy—y’ =Y, the equations are reduced
091 .- <a<1.0 to
20.3cos(1.9) y -20 - <a<-13,...,
0.19 - -<@<0.25..., K=y
0.95 - <a<1.0 ’
Brusselator Y= —kY—(3%(t)2= 1)(1— a)X+ 3x(t)(1— a)2X?
A=0.2,B=0.24 X 0.19 .- <a<1.0
0.3c0s(26) y @=1.0,a<-0.20 ... —(1—a)3X5. )

Here it becomes obvious that the parameters are also modu-

ted byx(t). Since the parameters are forced through a bi-

Now to observe the synchronizing phenomenon accordin#fJ . . ! . 4
t the t | behavi dx.— %! btained rcation point, we obtain the regions af for synchroniza-
0 a, the temporal behaviors gf, andx,=x, are obtaine tion numerically, which are given in Table | at given

when the two Iogi;tic maps am@) synchrqnized(b) inter- parametric values.

mittently synchronized, an¢t) desynchronized forr=0.4, The schematic diagram of the analog circuit of the Duff-
0.33, and 0.25, respectively, as given in Fig. 2. Figu® 2 ing equation for synchronization is given in Fig. 3, which
presents the signals &f, x;, y,, andx,—x;. Therey, and  implements Eqs(7). In the figure, the signal from the exter-
Xn—X;, converge to 0, that is, the ED generates IPLP. Themal oscillator(Tektronix FG501A is applied to the two cha-
the two logistic maps are synchronized. Figufb)Dresents otic systems in parallel through buffefs and 3 to synchro-
the signals ofy, and x,—x/,, which show on-off intermit- hize the oscillator where the amplitude is about 3.4 V and the

tency. This means the two logistic maps are intermittentl)freqyency is about 9.6 kHz. The operational amplifiers
synchronized. Figure(®) also presents the signalsyfand ~ (OA’S) and associated circuitry perform the operations of
x,— X, which are chaotic. Then the two logistic maps areaddltlon, subtraction, inversion, and integration. Analog mul-

not synchronized. In the figures the temporal behavior oit'p“er‘?’ (3and 4 implement the nonlm_ear_te_rms in the circuit
. : , B equation. We guarantee that our circuit implementation of
Y, is approximately the same as that)gf—x;,. This indi-

cates that the ED well describes the signal differences of the
master and the slave systems. It also verifies that synchroni-
zation occurs when the ED generates IPLP.

Now to demonstrate our synchronization in electronic cir-
cuits based on the forced double-well Duffing equation, we
first consider the following master and replica slave system
equations with a feedback signe(t):

Master System

>

x(®)

©— aZa (d)-
| | | !

sub,

ky
- - @ - R, FIG. 4. Experimental outputs of the circui) Chaotic attractor
X O i of the forced double-well Duffing equation projected onto Xye
Slave System plane, and the trajectories of the master sysyems slave system

y’ when the two systems atb) synchronized ¢=0.56),(c) inter-
FIG. 3. Schematic diagram of the circuit based on the forcedmittently synchronized 4=0.59), and (d) desynchronized
double-well Duffing equation to implement synchronization. (a=0.65).
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Eq. (7) is exact, and that the coefficiektcan be indepen- in Table I. (In experiment, we have obtained other various
dently varied by adjusting the variable resist®s and R,. regions of synchronization as we vary the frequency or am-
The circuit time scale can be easily adjusted by changing thglitude of the external forcg.
values of the capacitors for integration. For synchronization, Our technique of synchronization is applied in other non-
the signalx from the master system is substracteckbyThe  linear dynamical systems numerically such as the forced
subtracted signal is reduced by a variable resi&r100  double-well Duffing, the Lorenz, the forced Brusselator sys-
kQ2) to vary the scaling factor and the reduced one is tems. Then we observe our synchronization in various re-
added tox’. The OA’s and buffers used in this circuit are gions ofa even ifa#1.0 as given in Table I. In the regions
LF353, and multipliers3 and 4 are MPY100. In this circuit, \here our synchronization occurs the ED’s generate IPLP
all the resistors connected to the OA’s and buffers are 100 Konnected with on-off intermittency as analyzed in the
() and the capacitors are 1 nF. ab
To illustrate the chaotic behavior of the master system, we In conclusion we have observed a mechanism of synchro-

obtain the phase diagram efversusy as given in Fig. &).  pization, which occurs when the ED generates IPLP. We

The figu_re well shows the typical phase_ diagram of the DUf.'have developed for this synchronization a method of feeding
fing oscillator. To observe synchronization, we tune the varipa ok a signal of the master system to the corresponding vari-

aE)Ie resistoR;, and obtain the phase diagramsyobersus  ,pe of the slave system. The mechanism of synchronization
y’ when the two chaotic systems are synchronized, intermitis yerified in the logistic maps, and demonstrated in elec-

tently synchronized, and desynchronized. When0.56, the ¢ circuits based on the forced double-well Duffing equa-
two systems are synchronized as the phase diagram shows|g, e expect this type of synchronization will be helpful

Fig. 4b). When«=0.59, the systems are synchronized in-in geveloping other methods of synchronization where, espe-
termittently as in Fig. ¢). And whena=0.65, the systems  ¢ja|ly on-off intermittency appears. It is also expected to be

are not synchronized as in Figj. In this circuit, the region g jicable to practical systems such as private communica-
of our synchronization is about 0.5@>0.49. In addition  {jgns.

we obtain our synchronization when 09%2<1.0, and the
Pecora-Carroll synchronization when=1.0. The synchro- This work was supported by the Korean Ministry of Sci-
nization regions are similar to those obtained numerically agnce and Technology.

ove.
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